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FOREWORD

During 1974-1975, the author spent his sabbatical leave at
the International Institute for Applied Systems Analysis,
Laxenburg, Austria, where he was able to continue his
research in credibility methods in a stimulating inter-
national scientific community.

Because of the difficulty of obtaining copies of research
memoranda published during that period, it seems desirable
to reproduce them in this format for distribution to inter-
ested colleagues, sponsors, and students. Naturally, credit
for support and initial distribution of this work should
remain with IIASA; two of the papers have been submitted to
journals for possible publication.
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The Use of Collateral Data in Credibility Theory:

A Hierarchical Model

William S. Jewell*

Abstract

In classical credibility theory, a linearized
Bayesian forecast of the fair premium for an individual
risk contract is made using prior estimates of the col-
lective fair premium and individual experience data.
However, collateral data from other contracts in the
same portfolio is not used, in spite of intuitive feel-
ings that this data would contain additional evidence
about the quality of the risk collective from which the
portfolio was drawn. By using a hierarchical model,
one makes the individual risk parameters exchangeable,
in the sense of de Finetti, and a modified credibility
formula is obtained which uses the collateral data in
an intuitively satisfying manner. The homogeneous for-
mula of Buhlmann and Straub is obtained as a limiting
case when the hyperprior distribution becomes "diffuse”.

0. Introduction

In the usual collective model of risk theory [1], the
random variables generated by individual risks are assumed to
be independent, once the individual risk parameters are known.
However, a priori, only collective (portfolio) statistics are
available, taken from a distribution which is mixed over a
prior distribution of the parameter. We assume that unlimited
statistics are available for the collective as a whole, and a
limited amount of experience (sample) data for individual

risks drawn at random from the collective.

*University of California, Berkeley, and International
Institute for Applied Systems Analysis, Laxenburg, Austria



In classical credibility theory, we make a linearized
Bayesian forecast of the next observation of a particular
individual risk, using his experience data and the statis-
tics from the collective; the resulting formula, which has
been known in various forms for over fifty years, requires
only the individual sample mean, and the first and second mo-
ments from the collective.

If one attempts to use collateral data from other risks
in a credibility forecast of a certain individual risk, it
turns out that this cohort data has zero weight, and is dis-
carded in favor of the assumed-known collective statistics.
This is essentially because the various individual risk pa-
rameters are assumed to be independent and representative
samples from the prior distribution.

This result is disturbing to many analysts, who feel
that data from other risks in the portfolio contains valuable
collateral information about the collective. 1In several of
their models, Biihlmann and Straub [3,4] argue that, since the
(mixed) moments of the collective must be estimated anyway, a
credibility forecast should be only in terms of cohort data.
They achieve a partial result of this kind by using a propor-
tional function of all experience data; this forces the use
of cohort data into an estimate of the collective mean, but
the second moment components are still required. In [12], the
author describes a model in which the individual risk parame-
ters were correlated through an "externalities" model; the re-

sulting formula uses both cohort sample data and the first




and second collective moments. In [18], Taylor describes a
model in which the "manual premium" (collective mean) is it-
self a random variable, and also obtains a formula in which
collateral data is used. Finally, we should mention that
similar arguments are advanced about the use of cohort

data in the otherwise unrelated "empirical Bayes" models [14,
16].

In this paper, we attempt a reconciliation of these ap-
proaches, based upon the ideas of hierarchical models [13,14,
15] and model identification [17,19]. Although we obtain re-
sults similar to those already described in [12], the justi-
fication is completely different, and, we believe, provides a
more natural explication of the situations in which collateral

data should be used.

1. The Basic Model

In the basic model of the collective, we imagine that in-

dividual risk contracts are characterized by a risk parameter,

©, which is drawn from a known prior density, p(6). A cohort,
or portfolio, of such contracts consists of a finite popula-

tion [61,62,...,6r], whose members are drawn independently from

the same density.

Then, given ei, we suppose that we have likelihood densi-

ties, pi(xitleiL]'which govern the generation of n,; independent

lWe adopt the usual convention that all densities are in-
dicated by p(.), the arguments indicating the appropriate ran-
dom variable(s). The random variables, themselves, are indi-
cated where necessary by a tilde. Finally, to avoid complicated

(continued)



and identical realizations of the risk random variable,

iit(t = 1,2,...,ni). In other words, from the total portfo-

lio, we have r individual experience data records, X, =

[Xil'xiZ""'xin.]’ which, together, we refer to as the total
i

experience, X. Note that each process is stationary over

time, but that we (temporarily) permit the individual risks
to have different distributions. In particular, we need to

define the first two conditional moments:

m, (6) = &{%, |0, v, (8;) =o{%;, |61 . (1.1)
Prior to the data, p(6) is the same prior density for

any arbitrary risk drawn from the collective; thus, a priori,

th

we have the following average moments for risks of the i

and jth types:

mg = &%, ) = &m; BT (1.2)
s .z (5.5 0 (i # 3)

Bij = SR ¥al%5005) 7 flv, (B )1 (1 =3) (-3

. (3 53 0 (i # 3) .

1
1 (cont d)subscripts, we define the multiple conditional
expectation:

E68{£(3,b,8,) b3}

as being the expectation of f(a,b,c) using measure p(alb,c),
followed by the expectation using measure p(blc), followed by
the expectation using p(c). Any of these arguments may be
multiple, and other operators, such as variance, ¥, and co-
variance, ¥, may be used.




Note in particular that there are no covariances between
risks i and j # 1 for two reasons:
(i) assumed independence between iit and ﬁju’ given
Gi and ej;

~

(ii) assumed independence between éi and 96..

The total prior-to-data covariance between individual risks

is then:
) ) i3 7 Dyy (i = 3j,t = u)
%Txit;xju} = i1 (1 =3,t #u) . (1.5)
0 (i # 3)

The basic problem of credibility theory is to forecast

the next observation, is n +1 * of a selected risk, s, given
14
S

the total data from all risks, X = [xi|(i =1,2,...,r)], and

using the linear function:

n.
r 1

fS(X) =a_ + I z

.. , (1.6)
O i=1 t=1

it Xit
in which the coefficients (ao;ait) are chosen so as to approx-

imate the conditional mean &{X |X} in the least-squares

s,ns+l
sense, over all prior possible data records, p(X).
The appropriate least-squares formulae have been presen-

ted elsewhere (see, e.g.,[7,12]). It turns out, for the basic

model described above, that:

(1) a . = ay (i =1,2,...,r)(t = 1,2,...,n;) because

of the stationarity assumption;
(ii) a; =0 (i # 0,s) because Dsj =0 (j # s), that
is, éj and és are independent.



Defining the ith credibility factor, Zi’ and time constant,
Ni’ as:
Zi = ni/(ni + Ni) : Ni = Eii/Dii : (1.7)
and the ith experience sample mean, ii’ as:
;{=ir;;ix (1.8)
i n, L4 it ' :

we obtain the final credibility forecast as:

fS(X) = (1 - zs)mS + ZSSES + O(Xi#s’t) . (1.9)

Various interesting interpretations of this classical result
are possible [7,8,12], and it is known that (1.9) is, in
fact, the exact Bayesian conditional mean for a large and

important class of prior and likelihood densities [9,10].

2. Objections and Previous Results

Two practical objections to the result (1.9) seem to be
raised in the literature. The first is that three prior-
to-data moments, ms, Ess’ and Dss’ must be estimated from the
collective for each risk which is forecast. Even in the more
usual, identical-risk case, where m, =m, E;; = E, and D;y = D,
for all samples i = 1,2,...,r, (1.9) provides no assistance
in estimating the common moments. This concern is related to
the second objection, namely, that there ought to be some use

for the cohort data,-{xi }, since it is precisely from this

#s,t
data that one would attempt to form estimates of the first and

second moments in actual practice. This collateral data ought,




then, to be used either to form initial estimates of m, E,
and D, or, in the case in which one had vague prior estimates
of them, to somehow revise them as more portfolio-wide data
becomes available. Notice that we are not talking about any
problems of non-stationarity, such as inflation, or shifts in
the risk environment, but just the vague notion that our col-
lective might, in some way, be different from the initially-
assumed statistics.

Bihlmann and Straub [3] were the first to point out that
one can force all the data in X to be used by setting a, in

(1.6) equal to zero, and constraining the remaining coeffi-

cients to give a forecast which is unbiased, as in (1.9). For
the simple model of the last section, in which the ﬁit are
not identically distributed, we obtain:
r /m, _
z <———>Z X
i=1\"ii/ *t % - 5 1
fS(X) = (1 - Zs) m > + 2%, . (2.1)
r <mj>
L |[=—]Z
. D..
j=1\"33/ J

The term in braces, which used all the sample data, even that
of risk s, is a substitute for mg in (1.9); however, there is
no simplification as far as collective moments to be estimated

are concerned, since all the M, E and Dii are used.

ii’
But in the important case where all risks are assumed to
be identically distributed, for the same value of §,

(2.1) simplifies to:



£.(X) = (1 - 3) + 2%, (2.2)

and now ﬁhe forecast depends upon Zi = ni/(ni + N), with
N = E/D as a ratio between variance components which must be
estimated from the collective. Of course, the forecast (2.2)
must give a higher value to the mean-square error which was
used to find (1.9).

If all data records are of the same length, n, =n and
Zi =2%2=n/(n+0N), (i=1,2,...,r), the surrogate for m in

the braces in (2.2) becomes simply:
r—
I x./r = I Y x.,/rn , (2.3)

fhe grand sample mean of all cohort data!

In some work on "related risk" models [12], the author
assumed a situation in which the risk parameters § =
[51,52,...,5r] are statistically dependent, with known joint
prior. The only effect of this assumption is to introduce
non-zero terms into the last line of (l1.4), viz.:

Dy 4 = &lm, (6,); mj(‘éj)} (2.4)
for all i,j. If the underlying risk likelihoods are different,
then a multidimensional credibility model [7,11] must be used
with an r X r system of equations solved to find a matrix of

credibility factors. However, in the important special case




where the risks are identically distributed, given 9,

p(6) consists of exchangeable random variables, and there are
only four collective moments, m, E, and, say, Dll and D12 for
the cases in which i = j and i1 # j, respectively, in (2.4).
One may easily show that, with this correlation between risk

parameters added, (1.9) becomes:

(Dll - DlZ)m + D Z,

fS(X) = (1 - ZS)

(D1 = Dyyp)
(2.5)

where the credibility factors now require a modified correla-

tion time constant, lez

zi = ni/(ni + le) : le = E/(Dll - Dlz) . (2.6)

As in (2.2), the expression in braces in (2.5) is an estimate
for the mean ms, which can be seen to be different from m,
because of the non-representative way in which the cohort of r
fisks may have been selected. As the correlation between the
parameters vanishes, D12 + 0, Dll -~ D, and (2.5) reduces to
the usual formula (1.9), with all the collateral data being
thrown away.

Although this model is satisfactory from the mathematical
- point of view of explaining when cohort data would be used
in a linear forecast, it does not show why there could
be correlation in the collective, why the risk parameters should
be exchangeable random variables, and under what conditions this
correlation would be weak or strong. For this purpose, we need
to extend the traditional model of the collective into a hier-

archical model.
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3. A Hierarchical Model

In our expanded model, the concepts of individual risk
random variables, risk parameters, and a cohort of risks chosen
from a collective are retained, but we imagine that our collec-
tive, the one under study, is not necessarily representative of
other possible collectives which are drawn from some larger

universe of collectives.

Formally, this means that there is a collective selection

hyperparameter, &, which describes how possible collectives may

vary from one another, when chosen from some hyperprior density

p(®¢). Once ¢ is chosen and the collective characteristics are
defined, then the risk parameters [ei] are chosen for each

of the r members of our cohort, independently, and identically
distributed from a prior density p(8|¢). Finally, the n.
experience samples for each individual risk i are drawn inde-

pendently from a likelihood, pi(x' ,¢). Notice that the

1t|ei
risk parameters and the individual risks are now independent
only if ¢ is given; from the prior-to-selection-of-collective
point of view, there is apparent correlation between cohort
results because of the mixing on ¢.

This somewhat abstract model has a very practical inter-
pretation. Imagine an insurance company in which the individ-
ual risk is an individual insurance contract, and the collec-
tive is just a portfolio of similar coverages within our com-
pany. It is well recognized that portfolios vary from company

to company, depending upon sales strategy, available customers,

local risk conditions, etc.; our portfolio may be better or
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worse, than, say, the nationwide average. The universe of
collectives, then, corresponds to the union of all possible
risk contracts of this type in the nation, for which we may
assume adequate statistics are available. Thus, in a hier-
archical model, we hope to use nationwide statistics, together
with all the data from our portfolio, not only to predict next
year's fair premium for individual risks, but also to draw
inferences about what kind of a portfolio we have.

For the development of a least-squares forecast, we start

with the individual risk moments of p(x,

1t|ei’¢):

ml(el,SO) = g{xltlel'<p} H Vi(eir‘p) =(y/{x1t|el"p} ' (3.1)

and, from the usual conditional arguments, form the universal-

average mean of the ith type:
i

My = Slxg ) = 8Im (B, ) |, ]e} . (3.2)

The universal covariances, using the conditional independence

properties described above, are:

Fii + Gii + Hii (i =3,t =u)
(g{xit;xju} = Gii + Hii (i = 9,t # u) (3.3)
Hij (i #3) .

where

F.; =d&&{v (6,9 |6i|<p}

i (3.4)

-

(3.5)

-

Gy = gﬂ/‘{mi (6,,%) | 0, K2
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and

H, . =f€{é’{mi(5i,«3)|5} ; &m

i3 (ej,«’)lqo}]» . (3.6)

3
Several remarks are in order. From one point of view,
what we have done is to introduce correlation between risk
parameters of members of the same collective, for on comparing
the above with (1.5) as modified by (2.4), we get the formal

equivalences:

.. = F.. ; D.. =G,. + H.. .. = H,. i j .
E ! ii ii H11 Dlj Hlj (i #3) (3.7)

However, the interpretation is completely different, as we
have seen.
The second observation is that is might seem worth while

to decouple the x,, from ¢, and make the likelihood only depen-

it
dent upon éi; this might simplify some of the computations
above, but does not diminish the number of individual prior-
to-selection-of~collective moments needed.

However, in the important special case where the individ-
ual risk contracts are similar, giving identical likelihoods,
given ei and ¢, it can be seen that only four moments
remain: M, F, G, and H. These may be interpreted in terms
of our simpler model by noticing that it is as if the moments
of Section 1 had a hidden dependence upon an unknown parameter
¢. Calling those moments, then, m(¢), E(¥), and D(¥), we see
that the universal moments are equivalent to:

M=d&m(®) ; &F = &SE(¢) ; G =4&D(¢) ; H =Ym(@) .
(3.8)
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In other words, M, F, and G are uniyerse-averaged versions of
our previous m, E, and D. H, however, is new, and represents

the variance of the fair premium over all possible collectives.

4. Universal Forecasts

Continuing with the important special case of identical
risk distributions, it follows easily from least-squares theory
and the above definitions that the optimal credibility forecast
for the hierarchical model is:

r
GM + H,I. 2.X, _
£.(X) = (1 - 12) o) o+ 2 X (4.1)

where now a new universal time constant, NU, appears in the

credibility factors:

NU = F/G ; zi = ni/(ni + NU) . (4.2)

Alternatively, we can get (4.1) from (2.5) and (3.7).
Following an idea of Taylor for his model [18], we note

that (4.1) can be split into two parts:

fs(x) = (1 - zs) M(X) + zsxs ; (4.3)
r —
. GM + Higl zi i
M(X) = = (4.4)
G + H.I. %Z.
j=1 3

The second formula may be regarded as a revision of the "prior

expected manual premium", M, using the experience data of all
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members of the cohort to obtain an "adjusted manual premium",
ﬁ(x). This revised manual premium is then used in an ordinary
credibility formula with the apprépriate individual credibility
factor, Zs, for the forecast risk s.

The credibility revision of the universal mean (4.4) de-
pends in a complicated manner upon the amount of data from

each risk. However, if all data records are of the same length

n, then Zi = Z n/(n + N for all i, and (4.4) can be re-

u)

written:
1 L=
MX) = (1 - Z,0M + 2, (=~ i1 X3 o (4.5)
where the collective credibility factor, ZC’ is:
7 = rnH _ rH n } '
C F+nG+rnH |G+ rH||n + (F/G + rH))
(4.6)

If rH is large compared to G, this function increases at first
more rapidly than the common individual credibility factor Z,
as n increases; however, ZC has an asymptotic limit less than
unity, so that (4.5) is not a credibility formula in the usual
sense ; that is, the grand sample meah is not ultimately "£fully
credible" for m(¥).

This puzzling result can be ekplained by remembering that
the risk parameters of the cohort [eili =1,2,...,r], once
picked, remain the same for all n. Therefore, if one estimates
a fair premium for an arbitrary new member of the portfolio,

say, with risk parameter 6 then there remains the possibil-

r+l1’

ity that the cohort sample is biased. Thus ZC does not approach
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unity with increasing n, unless rH »> G, which means that a
large enough portfolio contains a representative sample of
risk parameters. This effect is not important in our estimate
of x because of the factor (1 - 2 ) in (4.1).

s,n+1l s

If, on the other hand, we did wish to estimate the fair
premium averaged over the current portfolio:

r -~
z .
=1 Xlln+l|x !

S
R

i
then one can show that (4.5) is still correct if a different
credibility factor,

Z, = (nG + rnH)/(F + nG + rnH) , (4.7)

is used; this does approach unity with increasing n.

5. Limiting Cases

The time constant NU = F/G is just the universe-average
version of the classical Biihlmann time constant N = E/D, so
that (4.3) is in a certain sense similar to (1.9). However,
the factor H = ¥m(¢) is completely new, and it is interesting
to examine limiting cases.

If H > O, then we may say that all collectives are repre-
sentative samples from the rather narrow universe of collectives
in which there is little variance in fair premium. Thus, M -+ m,

G~+D, N, >N, and Z, ~ O. ©No updating of the fair premium is

U C

necessary from the collateral data, and (4.3)-(4.4) reduce to

the classical model (1.9).
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On the other hand, if H » «, this means that collectives
are drastically different from one another, or in Bayesian
language, we have a "diffuse prior" on m(¢). Then from (4.4)
or (4.6), we see that, whenever there is cohort data, it is
"fully credible" for m(¢), and (4.1) reduces to the Biihlmann-
Straub proportional forecast (2.2)!

The same effect occurs in (4.6) as r - «, but for a dif-
ferent reason: the grand sample mean of X is almost surely
the correct mean, m(¥), for our collective, and thus M is

eliminated.

6. Approximation Error

The value of any forecast must be judged in terms of the

nean—-sguare e€rror:

I P Sy g2

I = @m[xs’ns+1 fs(x)] . (6.1)
A certain portion of this error is due to individual fluctua-
tion, and cannot be removed; the remainder is essentially an
approximation error between the chosen forecast and the optimal

Bayesian forecast, &{x 11X}, (see,e.g.,[12].) We now

s'n +

s
examine the mean-square error for several of the forecasts
suggested previously.

The first and simplest possibility is to take the univer-

sal mean, fs(X) = M, as an estimator. Then:

Il =F+G+H , (6.2)

that is, no component of variance is removed.
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The second possibility, suggested by the surrogate for
the collective mean in (2.2), is to take the credibility~-

weighted mean of all cohort data, f_(X) = Zzi§i/ZZj, giving:

(1 - ZZS)

J

Il

I

which removes the fluctuation component H, but may increase
the second term for Zs < 3.
A third collective-wide possibility which has already
been justified is the "adjusted manual premium", M(X), in (4.4),
for which:

G(1 - 2zs)

'é“‘_;'ﬁz_j"‘ . (60“‘)

I3 =F + G+ H

Turning now to forecasts which use the data from the in-
dividual risk in a special way, we could use the Bihlmann-Straub

homogenous formula (2.2), giving:

_ _ S
I, =F+ G(1 zs) 1+ ——— . (6.5)

Also of interest would be an individual forecast in which

the cohort data is ignored, (1.9):

_ 2
Iy = F + G(1 - zs) + H(1 - zs) . (6.6)

Finally, we have the variance when the optimal universal

forecast (4.1) is used:

_ G 2
I6 =F + G(1 ZS) + H a——_l_—*ﬁ—z'g— (1 ZS) . (6.7)
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Notice that none of the forecasts removes F; this is the
irreducible variance component. Comparison of different fore-
casts depends in general upon the values of G, H, and the
credibility factors; for example, one cannot say that I, is
uniformly better than Il.
The following relationships do hold, however, for all

values of the coefficients:

A
[amg
~e

=

A
H—
A
—
-8

This effectively removes Il and 12 from the second-rank con-

tenders, after the optimal forecast I6.
The Biihlmann-Straub formula, Iu, would seem to have

special appeal because of the fact that H is removed completely.

However, I6 < I, always; and when H » «, I¢ approaches a finite

limit as well. Conversely, the classical individual credibility

mean-square error, 15, continues to increase as the universal

prior becomes more diffuse, and this is the basic justification

for including the cohort data.

7. Normal Hierarchical Family

A special case of interest is when all densities discussed
in Section 3 are normal. If N(a,b) refers to the normal density

with mean a and variance b, then by setting:

pix;,[6.,9) = N(O,,F) ; p(o;|e) =N(¢,G ; ple) =NHMH
(7.1)
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we find that the universal forecast (4.1) is exactly the

Bayesian conditional mean &{x IX}.

s’ns+l
Further, the adjusted manual premium, ﬁ(x) (4.4), is

& ¢|X}. The joint distribution p(8|X), as well as p(¢|X), are

both normal, and their precision matrices may be found by

elementary calculations.

8. Related Work

A linear Bayesian model which is hierarchical in form
has been given by Lindley and Smith [13,14,15]. 1In this model,
x, 8, and ¢ are random vectors for which &{%|8,¢} = A0, and
&Tglf} = A2EJ A, and A, being matrices of appropriate dimension.
The underlying distributions are all assumed to be multinormal,
with &#{#} and the covariances assumed to be known constants.
When specialized to our model, results gimilar to Section 7
are obtained.

In [18], Taylor develops a credibility model in which the
"manual premium", m, is revised according to "the average
actual claim amount per unit risk in the entire collective in
the year of experience". His assumptions are different from
ours, in that m "has a prior distribution at the beginning of
the year of experience", but "for fixed m, each m(ei) is fixed"
(in our notation). I interpret this as saying, in effect, that
there is a hidden parameter, ¢, which is still left in m = m(¢),
after averaging over the ei. However, I have been unable to

further relate the two models, and his formulae have the dis-

advantage that, as "the prior distribution on m" becomes
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degenerate, his forecast does not reduce to the usual credi-

bility formula.

9. Conclusion

In conclusion, we mention that our hierarchical model .
implies that the joint distribution of the risk parameters at

the level of the insurance company is:

r
p(6) = J I p(eilw) ple) de ,
i=1

which is equivalent to assuming that the risk parameters are

exchangeable random variables. This powerful concept, due to

de Finetti [5,6], is a natural modelling assumption for prob-
lems in which a random sample generates a finite populatioh
whose members are distinguishable only by their indices, as
in our selection of a portfolio from an abstract collective.
[14], Section 6, and [15] contain further discussions of the
applicability of exchangeability. 1In a certain sense, what
our model does is to use exchangeability to iﬁtroduce correla-
tion among the cohort ei, in the same way that a Bayesian prior
introduces correlation among successive individual samples. In
both cases, this prior correlation vanishes as the actual
values of ¢ and 6 become identified.

G. Ferrara once asked how credibility experience rating
could be used in a company where there are no prior statistics.
By referring the prior estimation problem to a higher level of

data collection, and by using all the experience data generated
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by the company's contracts as one learns about the actual
portfolio quality, we believe that the model developed here

goes a long way towards answering this question.
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Abstract

The development of a Bayesian theory of regression
requires special distributional assumptions and rather
complicated calculations. 1In this paper, general formulae
for predicting the mean values of the regression coeffi-
cients and the mean outcomes of future experiments are
developed using the methods of credibility theory, a lin-
earized Bayesian analysis originally used in actuarial
problems. No special distributional assumptions on prior
or error distributions are needed, and heteroscedastic
errors in both the dependent and independent variables are
permitted. The first group of formulae hold for arbitrary
design matrices and dimensionality of input, since, as

eommon in Bayesian methods, there are none of the usual

problems of identifiability. However, in the event that
the design matrix has full rank, the credibility results
are equivalent to a linear mixture of the prior mean pre-
diction and the classical (generalized) least-squares
regression predictor; thus, the credibility result provides
a bridge between full Bayesian methods and classical
estimators. One can also find easily the preposterior co-
variance matrix for the credibility estimators, and it is
shown that prior information and the results from prior
experiments can be cascaded in a particularly intuitive
manner. Many special applications of the credibility
formulae are possible because of the generality of the
assumptions.

~iii-



Bayesian Regression and Credibility Theory

William S. Jewell

Introduction

Regression theory plays a fundamental role in statistical
model-building, parameter estimation, and forecasting. In
recent years, the need to incorporate prior information into
these models has stimulated the development of Bayesian methods
of regression analysis, particularly in the field of economet-
rics [8,20,21,22,24,32]. However, the resulting formulae are
usually complex, and require guite stringent assumptions on
the error likelihoods and on the prior distributions of param-

eters.

Credibility theory, which was developed for a variety of
simple predictive problems in insurance [4,5,12,13,14,15,17],
is a linearized Bayesian method for forecasting mean values
which circumvents many of the difficulties of a full Bayesian
analysis; furthermore, in many cases of practical interest,
the simplified formulae are also exact. In this paper, which
was stimulated by the initial work of Hachemeister and Taylor
[10,25], we apply credibility ideas to the full range of

Bayesian regression models.




1. Classical Multiple Regression

In the classical model of linear normal multiple regression
[8,23], we assume that an nxl random vector of observable
output variables, ¥, satisfies the linear model

v = XBg + 1 (1.1)

where X is a known nxk matrix of observations on k independent
variables, called the data or design matriz, B is a kx1l vector
of unknown regression coefficients, and U is an nxl random
vector of unobservable error variables. If we assume that U
is multinormally distributed, with zero mean and known co-
variance matrix C, .

{u;u} = #y;yr =yl = ¢Cc , (1.2)

then it is well known that the ordinary least-squares estimator
of B from the n observations ¥ = y, with design matrix X and
covariance matrix C, is given by

E(y) = (x'c'lx)"lx'c'ly . (1.3)

In particular, if one makes the assumption that C is
diagonal, with common terms, then (1.3) has the simpler form
B = 't
known. Many other classical results are available based upon
the normality assumption (see, e.g., [8,22,23]).

X'y , and the common error variance need not be

*
We define the (possibly non-square and unsymmetric) covar-
iance matrix,

&{w;5) = £(Wy'} - Swy £,

for any two conformable random vectors or scalars w and y, and
write @{¥;y} = ¥{¥}, which is usually called the covariance

matrix.




2. Bayesian Multiple Regression

For a full Bayesian analysis, it is convenient to replace
(1.1) by an equivalent model in which the expected values of
the outputs are linear functions of the known inputs, viz.

#{¥]6} = x8(8) . (2.1)

Here 6 denotes an unknown parameter which controls all the
parameters of the conditional density, or 1ikelihood, of ¥,
given 6, denoted by p(y|6). The conditional covariance of y,
given 6, will be taken as an arbitrary symmetric nxn matrix

¥{g|6} = }(8) . (2.2)

Given the fixed, but unknown, parameters [B(8),)(8),...1,
we assume in Bayesian analysis that a prior density, p(6), or
what is the same thing, a joint prior density, p(B,),...), is
available. Then, a priori (i.e. prior to data), we define
the first two moments of the vector of regression coefficients
as

&B(6) =b ;  ¥BME) =4 (2.3)

and the prior expected value of the covariance matrix as

*

&Y (8) =&1y|8r = E . (2.4)

From these definitions, we can also obtain the prior first two
moments of the output variables, given X. From (2.2), the mean
and covariance of the conditional mean output are

&{5) = #81518) = x (2.5)

and

*
We use the convention that a multiple conditional expecta-
tion

EE8{£(3,5,8) |B|&}

means the expectation of f first with respect to p(alb,c),
followed by expectation with respect to p(b[c), then using p(c).
Arguments may be multiple, and other operators, such as ¥ and &,
may be used. If the order is unimportant, and only & operators
are used, the above is, of course, &{f(&,5,8)} .



¥&1y]|6} = D = XAX' . (2.6)

From the covariance of the mean and the mean covariance, we
obtain the total covariance (1.2) of the output variables
prior to data as

¥{¥} = C =E + D =E + XAX' . (2.7)

If multinormal and related densities are used for p(y|6) and
p(6), these are the only moments of interest.
Now, suppose an nl-dimensional experiment is run with
design matrix Xl’ resulting in a vector of outputs, ¥ = Yqyi
we denote this by (nl,Xl,yl). Using the likelihood
p(ylle) = p(ylle,Xl), and the prior on the parameters, p(6),
we obtain the posterior (to the data) density p(elyl) = p(elyl,Xl)
in the usual way:

p(y;|6)p(6)
(2.8)

14

p(olyyi =
Jp(leQ)p(®)d®

where, for convenience, we suppress the known design matrix,
Xl.

. From (2.8), the updated estimates of the parameters B(é),
}(8),..., are, in principle, available. For example, the ex-
pected value of the vector of regression coefficients posterior
to the data is

s ® |yy) = [e@polyae (2.9)

and the predictive density for a future experiment (nz,Xz,yz),
with the same parameters, but independent outputs, is

P(y,ly)) = Ply,yly /X .Xy) = Jp(yzle,xz)p(elyl)de - (2.10)

Because of the difficulty of carrying out (2.8)-(2.10)
for arbitrary priors and likelihoods, most of the Bayesian
regression literature makes the following additional assump-
tions:




(1) The likelihood, p(y|6) = p(y|6,X), is multinormal for
any experiment (n,X,y)--thus only the parameters
B = g(f) and I = £(6) are involved, and (2.8) can be
restated in terms of p(B,Z);

(2) Either the Ando-Kaufmann [1] Normal-Wishart natural-
conjugate prior p(B,X) is used to simplify the up-
dating in (2.8);

(3) Or, B and %I are assumed independent, p(B,LZ) = p(B)p(Z),
and simple marginal densities are chosen, typically
multinormal or non-informative (diffuse) for B, ana
inverse Wishart or non-informative for I.

There are difficulties with all of these assumptions.
For example, the Ando-Kaufmann prior is well known to be "thin";
that is, not all possible hyperparameters in p(B,Z) can be
specified independently. And analysts are divided over the
use of non-informative priors, although in some cases they
follow from invariance or limiting arguments ([32], p. 226).

Also, computations made under these assumptions are dis-
tinctly untidy, involving much completion of the square, matrix
manipulation, and multidimensional integration, particularly
if the full posterior parameter density, p(B,Zlyl), and its
marginals are desired, or if the predictive density (2.10) is
sought [21,30,32]. The only non-trivial relaxations of the
normality assumption of which we are aware are the numerical
trials of Box and Tiao ([3], Chapter 3) with the exponential
power distribution.

In the sequel, we propose to follow a more modest course,
by concentrating on (2.9) and the related problem of predicting
the mean outcome of a future experiment, by using the linear-
ized ideas of credibility theory. This almost distribution-free
approach will greatly simplify the resulting formulae, and
will provide an intuitively appealing bridge between classical
and Bayesian regression techniques. And we shall see that
in many cases of practical interest, the linearized credibility
formulae are also exact Bayesian.

First we review the basic concepts of credibility theory.



3. Credibility Theory

Credibility theory is essentially linear least-squares

applied to conditional distributions. Suppose that a p-di-
mensional random vector, w, is to be forecast from a single
sample of an r-dimensional random vector, ¥y =y, in the sense
of finding a p-dimensional vector forecast function, £f(y),
which minimizes the sum of the expected squared errors for
each component

p
H = ” ) lwy - fi(y)lzdP(w,y) = trfl W= £(@IIW-£(F)I') . (3.1)
i=1

It is known that the integrable functions f? which minimize

(3.1) at value HO form the conditional mean vector,

£y = siw|y} . (3.2)

In many cases the exact conditional mean is difficult to cal-
culate, and an approximate forecast vector, £, is acceptable.

By completing the square, we find

p
0+ [ 1w - e’ aem
=1 (3.3)

H = tr @6)(7/‘{‘7\7'}7} '

e
1

so that any f can also be evaluated in terms of its fit to the
conditional mean f (y).

A convenient choice of an approximate forecast vector is
a linear function of the observables,

y ’ (i =1,...p) » (3.4)

B0 =250 % L Zi5Y5

e~

J
where the p(r + 1) coefficients {zij}, henceforth called

credibility coefficients, are adjusted so as to minimize (3.1)
or (3.3). It is well known that the optimal values of these

coefficients are then given by rp normal equations of the form

(i =1, ... p)

r




with the {z } determined so as to make the forecast (3.4)

unbiased :

or
20 = 610} = 1 2560850 #lE, @) = sty

(i=1,...p) . (3.6)

Let Zy be the p-vector [zio]', and Z the pxr matrix

[zijljfoﬂ; then the optimal conditions (3.5) (3.6) can be written

as

iyt =#®{w;y} , (3.7)
and

= &{w}r - z&8{y} (3.8)
so that the optimal linear forecast (3.4) is
fly) =&{w} + z2[y - £y} (3.9)

and all attention can be focussed on finding the credibility
matrix, Z, from (3.7). The minimal value of H is then easily
shown to be

H = tr[r(#) - z@(§:;9)]> 5O . (3.10)

Notice that each component in (3.1) is, in fact, minimized
independently; we use matrix notation only for convenience.

In Bayesian problems, the joint distribution of w and y
is parametrized by a parameter 6 which is not known. There-
fore the optimal_Z must be determined a prlorl, using measure
P(w,y) =&P(w ,yle) Thus, the covariances in (3.7) will, in
general, consist of two terms similar to (2.7). One also
looks for special forms of ¥{¥} which will simplify the com-
putation of Z in (3.7) [1l6].

In the insurance models which gave rise to credibility
theory, there is an underlylng sequence of p-dimensional
random vectors {xl,xz,.. t+l" .}, which are independent

and identically dlstributed, given a fixed, but unknown,




risk parameter," 6 . The problem is to predict £{Xt+1|xl,x2,... xt},

called the "experience-rated fair premium". Using the above
analysis, it is easy to show that the optimal linearized ap-
proximation to the conditional mean is

t
- . _ _ ~ 1
g{xt+l[xl,x2,...xt}—~f(x1,x2,...xt) = (Ip zx)g{x} + ZX{F uzl x;},

where I is the pxp unit matrix, and Z is the pxp optimal credi-

bility matrix, given by
Zx(_Ex + th) = th ' (3.12)

where Ex and Dx are the pxp matrix components of the covariance

of a typical ¥, defined in a manner similar to (2.4) and (2.6)
[13].

The original credibility formula was developed heuristically
by American actuaries in the '20s for a one-dimensional version
of (3.11), in which Z_ gives the weight, or "credibility," to be
attached to the "experience" sample mean, (qu/t), as opposed

to the "manual fair premium" &#{X}. In the one-dimensional case,
0 < Zx < 1, and approaches unity as the "weight of evidence",

t, becomes large2 In the general (but nondegenerate) model,
Zx consists of p“ rational functions of t, not restricted to

[0,1]; however, Zx-+Ip as t~» o, showing that ultimately the

sample mean of the ith component is "fully credible" for pre-
dicting the ith component of the next observation.

Although credibility theory was originally developed as an
approximation theory for mean forecasts, it can also be used
as an approximation theory for higher moments, or even for
distributions [4,5,11].

Moreover, and perhaps more importantly, it also turns out
to be an exact theory for forecasting the mean, when the likeli-
hood is a member of the exponential family in which the sample
mean is a sufficient statistic, and when a natural conjugate
prior is chosen. For further details, see [12,13,14].




4. Credibility Applied To Regression

We now apply the above theory to three related Bayesian
estimation problems, assuming that data from an (nl,Xl,yl)

experiment is available:
(1) the estimation of the mean regression parameters
posterior to the data;

(2) the prediction of the mean response in a future
experiment (n2,X2,y2);

(3) the estimation of the mean error variables in (1l.1).
We shall show, with minor exceptions, that the three credibi-
lity estimates are equivalent, and related to the classical
estimator (1.3).

4,1 Estimation of Regression Parameters

Suppose we wish to estimate g{B(é)Iyl} with credibility
theory (X; is still fixed and known). Then in Section 3 we
take w = B(6), k = r, and ¥ = ¥q+ giving &{%} = b, &{§F} = le,

% {(#; 5} = %(B8(6);d(F, |83} = 2xf

and, from (2.7),

= B + X, AX!

11
where Ell = ézll(e) is the n; xny matrix of expected covari-

ances of Y1 during the experiment.

From (3.7), the k><nl credibility matrix

7 = A -1 1

8 Xicll (4.1)

— [ vy o
= AXl(Ell + XlAXl)

gives a linear, unbiased estimate of the posterior parameter
vector

S18(0) |y ,X ) ® £5(yysXy) = (Ik—ZBXl)b+ZByl . (4.2)

Notice that no assumptions have been made about the distribu-
tions p(y|6) and p(8) (except for the existence of the
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indicated moments), nor about the independence of the compo-
nents of ?l, given 6. However, EI% must exist for the inverse
in (4.1) to be well defined, if no special assumptions are
made about Xl (see Section 4.3).

4.2 Prediction of Mean Response in Future Experiments

Now suppose we have in mind a well-defined future experi-
ment (nz,Xz,yz), and the problem is to estimate f{?zlyl} =

éﬂ?zlyl,xl,xz} by credibility theory. There are two possible

cases, depending on whether
I,1(8) =®{F,:F,10} & Eyy =811, (00}
are zero or not, i.e., whether knowledge of the parameter

decouples the results of past and future experiments or not.

4.2.1 No Covariance Between Experiments

In most classical regression models, there is no covari-
ance between past and future observations, given 0, either by
assumption, or because there is a sufficient interval between
the two experiments, even if, say, the error process has serial
correlation.

For an exact Bayesian analysis, we have from (2.1) and
(2.9): :

which shows the close relation between the two problems.

Similarly, because of the linearity of a credibility
forecast, it follows that

é’{yzlyl,xl,xz} % sz (vqrXy:X5) = Xzfs(yl’xl)

2 2

where 2 is the n, xn, credibility matrix
Y, 2 1
-1
= \ ' = .
Zy2 XZAXl(Ell+-XlAXl) X2ZB . (4.5)

(X, - 2 X))b+2Z, ¥ 4 (4.4)




In other words, when there is no covariance between experiments,
estimation of the regression coefficients by credibility is
equivalent to estimation of future response.

4.2.2 Covariance Between Experiments

In the general case in which 221(6) # 0, infrequently

considered in the literature, the complete Bayesian analysis
is more complicated, and one needs to replace the assumption

£{§2|X2;6} = XZB(O) by an equivalent assumption about
é{?zlyl,xl,xz,e}. This could be of arbitrary form, but if it

is to be in agreement with the classical multinormal results,
then we must choose the usual regression of Yo on ¥y (see, e.q.

[23]1):
&5, v 1% ,X,, 8} = X,8(8) + I,(0) I77(0) [y, —~X;8(8)] . (4.6)

In an exact updating through (2.8), difficulty would arise
from the possible covariance of the terms 221(6) and ZI%(G)

with each other, and with B(8). However, if these terms have
small covariances compared with those of B(6), then one could
with small error replace these terms by their expected values,
and use the approximation

ELT, v 1% 1%y B(0)} % X,8(8) + By E]yly; - X 8(0)] (4.7)

to give an exact Bayesian updating:
of o ~ B X _l - =X .
1T, 1Y% Xy} = X,8{8(8) |y } + By E T lyy - X,8(8(0) [yy3] - (4.8)

In the credibility approximation, the formula in Section
4,2.1 is replaced by

F{w;gl = X 0% + E5p (4.9)

so that the new credibility matrix is

-1
—_ 1
Zy2 = (XZAXi + EZl)(Ell + XlAXl) ' (4.10)
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and, after some algebra, we find

< 2 = ' -1
(4.11)

which is of the same form as (4.8). So, to the degree to which
(4.7) may replace (4.6), we again have a simple relation be-
tween credibility estimates for the parameters and forecasts
for future observations.

4.3 Relationship to Classical Regression Estimation

In classical regression, emphasis is placed upon having
sufficient observations to fully identify all of the regression
parameters, i.e., n; > k, and X, has full rank k; the neces-

sity for this can be seen from the classical estimator (1.3).

'On the other hand, in the Bayesian credibility model,
it can be seen from (4.1)-(4.2) that the finiteness of b,
Ezi, and A is sufficient to guarantee the existence of an
estimator for é; one sample will revise the prior estimate of
b, even if X, does not have full rank! In fact, if n, is small,

1l

the calculation of (Ell4-XlAXi) 1 is particularly simple.
However, to relate our results to classical theory, we

shall henceforth assume that ny > k, and rank(Xl) = k, and

use the following result which Bodewig ([2] pp. 39, 218) at-
tributes to H. Hemes, and which is also given by Tocher [29]
(see also Lindley and Smith [19], pp. 6 and 34 for two later
attributes).

Theorem. If o and B are n x k matrices, then

(I, + ag') "L = I - alr, + gra) “tpr (4.12)

whenever either of the indicated inverses exists.

The fact that the determinants of the two terms in paren-
thesis are identical shows that the existence of one inverse
implies the existence of the other.

If we apply this to C_l, with a = X, and B' = AX'E_l, we
11 1 1711
get
-1 _ 1
Cll = (Ell+-xlAXl)
L § _ R -1 -1
= Ell[In Xl(Iki-AXlEllxl) AXiEll] . (4.13)
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Defining the two k x k matrices

_l
— 1 -
el = XlElle H (4.14)

-1,-1 _ -1, -1, ,-1,-1 -1,
(I, +e87) 77 = AA+e) ™ = (e +477) eg7s (4.15)

N
|

1

we obtain finally

-1
— ' a— -
ZB zleleEll : ZBXl zy i (4.16)
and (4.2) and (4.5) become
fB(Yl,Xl) = (Ik-zl)b-leBl(yl) ; (4.17)
£y, WXL Kp) = XplTy -2 bt 2y6y ()] (4.18)
with a k-dimensional vector estimator for B of
3 _ -1 -1 -1
Bl(yl) = (x:'LEllxl) xiEllyl . (4.19)
This rearrangement requires rank(eil) = k.

(4.17) is, from an aesthetic viewpoint, extremely satis-
fying, for it shows the familiar credibility mixing between
the prior mean parameter vector, b, and a sample statistic,

@(yl), in a manner similar to the multidimensional credibility

formula (3.11), and extensions of it to other sample statistics
[12]1[13]. Only a small credibility matrix, Zqs need be cal-

culated from (4.15), and its size depends only on the number
of parameters to be estimated, not the number of data points.

Of course, one must calculate Eli, but this is needed in any

regression problem, and is often assumed to be of diagonal
form. There is an obvious parallel between (4.15) and (3.12).

There remains to explain the relation between the
estimator Bl(yl) in (4.19), and the classical estimator Bl(yl)

in (1.3), for, as we know, the latter should be used with the

. - 1 1 -
total covariance Cll Ell + XlAXl. However, a simple cal

culation will show that the second term is annihilated in the
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least-squares form, so that
A A

and it is a matter of indifference how the estimator is
calculated.

4.4 Estimation of Error Variables

After a regression model has been calibrated, it is often
useful to verify the assumptions of the model by examining the
residual vector, Yy - xlfB(yl’xl)'

One can also think of estimating the true value of the
error variables, u,, in (1.1) by using Bayesian analysis [33].
Using the credibillty approach, we first find &{ﬁl} = 0,

VTﬁl} =‘?{ﬁl;§l} = E;;+ and then find the mean estimate,

F{a |y % b~ £

w, 1% = (I =X 2g) (7 = XpP)

1
= yl-xlfB(yl,Xl) ’ (4.21)
which is exactly the vector of residuals! This might have

been expected from first principles.

Perhaps it is worth pointing out that [6, Appendix 3]

&{4,;f (?l,xl)}=o . (4.22)

l; ul
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5. Estimation Error Covariances--Limiting Cases

It is of interest to compute the improvement in estimation
to be expected from the credibility formulae.

For the regression parameters, let the estimation error
covariance matrix be

3, (%)) = SUIB(E) - £,(7 X )1IBE) - £,(7;.%) 1"

i

¥{g(6) - fB(izl,xl)} , (5.1)

because the estimator is unbiased, a priori.

By elementary calculations based on Sections 3.1 and 4,
we find that the minimal "preposterior" value is the analog
of the term in square brackets in (3.10):

® (Xl) = (I

8 - zl)A = z €l . (5.2)

k 1

Remember that only the diagonal terms of ¢ are (independently)
minimized in using (3.1), H = tro.

For the prediction of mean future response, we find in
the no-covariance case of Section 4.2.1:

@yz(Xl,Xz)

|
N
—~
L
()
+h

- zl)AXé = E 4-X22181Xé . (5.3)

k 22

|
e

[\

[\

The result with covariance between experiments is similar,
with additional terms involving EZl'

The preposterior estimate of the covariance matrix of the
residual vector (4.21) is

- = v
@ul(xl) = XlZBEll Xl®B(Xl)Xl . (5.4)
Without an initial experiment, the value of zq would be

zero, and from (4.17) (4.18) (4.21) we would have to use the
means, b, X2b and yys as predictors, and (5.2) (5.3) (5.4) would

be equal to the appropriate total prior covariance matrices,
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A, + X.,AX!, and O, respectively.

Ej2 2

Similarly, if the first experiment is performed under
poor observational conditions, then the diagonal elements of
Eqiq will be much larger than those of Xlei' We see directly

that zy would be zero, and there would be a vote of "no con-
fidence" in the estimator él(yl), and b, Xzb, and y, would
again be the minimum-variance predictors for B8(8), Yor and uy,

respectively.

However, conversely, if the diagonal elements of A are
very large compared to those of €y this means that our prior
knowledge is very imprecise compared to the error conditions

of the experiment; A'1-+o is the credibility equivalent of the
"diffuse prior" assumptions often made in Bayesian analysis.
In this case, we see that zl+-l; "full credibility" is attached

to the classical estimator @l(yl), and the prior mean, b, is

given zero weight. There remain only the irreducible error
covariances €4 in estimating B(6), E22 4 X251Xé in predicting

v . .
Yor and Xlslxl in estimating u, .
Also, if we consider experiments with increasing ny., then,

under certain natural conditions, such as:

(1) The elements of Ell are bounded, for all nyi
(2) The design matrix, Xl, "£ills out" a finite range

of the x-axis in a stable manner, as n, increases;

it is easy to show that the elements of €4 in (4.14) are

bounded by a function which diminishes as nzl, that is, z,

approaches Ik as ny increases (see, e.g., [18]). 1In practical

terms, this means that an increasing number of initial sample
points can reduce the preposterior covariance in estimating
the regression parameter (5.2) as close to zero as desired;
however, there will always be an irreducible covariance E,,

in making forecasts (5.3). The covariance matrix @u(xl) in

(5.4) continues to grow in dimension, and depends in a com-
plicated manner upon the actual structure of Xl'
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6. Random Design Matrices

In many applications, Xl and/or X, must be considered as

random, either as a result of an uncontrollable input, because
the effective input cannot be precisely observed, or because
of deliberate randomization. There are many special cases in
the literature, (see, e.g.,[7,32]); we shall derive general
credibility results, and indicate only a few of the possible
specializations. Special attention must be paid to whether
X1, X2, or both are random variables, so throughout this section

we shall indicate the status of all inputs and outputs explic-
itly. We start with two simpler cases.

6.1 X, Random and Independent of Fixed Initial Experiment

If the future design matrix X, is random, but independent
of the fixed initial experiment (nl,Xl,yl), then the problem
of estimating the regression parameters is unchanged from
Section 4.1.

However, to predict the mean response of the second ex-
periment, we must now calculate a credibility approximation to
&Y,y ,X ) = 5g{§21yl,xl,i2}. Assuming, for simplicity,
unobservationally unrelated experiments, 221(6) = 0, we have
from (2.1) and Section 4.2.1.,

&1y,} = 4181, |81-8(0)1 (6.1)
and

G139 1%} = #{&{K,|61-8(8) X B(O)} . (6.2)

SlncerTleXl} = E;; + X;AX] and 5{yl|Xl} = X;b still, the

only effect in this case has been to modify the first term,

XZAXi’ in the definition of Zy in (4.5) to the form in (6.2)
2

and to change the z, term in (4.4).

0]
An important special case is:

Assumption I. Any random X is statistically

indevendent of 6. (6.3)

In this case, we see directly that g{§2} = g{iz}b and
%ﬂ?z;?lle} = é{iz}Ax', that is, all the results of Section
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4.2.1 apply with X2 replaced by its expected value:

6.2 Estimation of Regression Parameters when Xl is Random

If Xl is random, then to estimate B(6) we must use the joint

density p(yl,xlle) and generalize (4.2). For the mean outcome

of the initial experiment,

&{§,} = 181X |6}-8(B)} (6.4)

but the covariance of y, now has three terms:
Fly} = ¢15 (X, D)} + S |6}-8(B)) + YK B(B)[8) , (6.5)

where

£y (X1,0) =\7f{§llxl,6} (6.6)

shows explicitly the possible dependence of the conditional
observational covariance both on the design Xl and on 9.

(For consistency, we shall assume in the next section that
neither (6.4) nor (6.6) can, however, depend upon the future

values (yz,Xz)-) :

Since B(0) is constant, given 6, there is still only one
term in

%(8(8):§,) = @8(8): 41X, |B}-8(O)] . (6.7)

This form and the first two terms in (6.5) are easily seen to
be the generalizations of AXi and E;jp t Xlei, respectively,

as used in Section 4.1.

However, the last term in (6.5) is new, call it U. It
has components

k k
Utu = é’{lzl jZl 81(6)63 (e)(g{xtiixuj|e}} ’

(t,u =1,2, ...k) (6.8)

and thus contains information about the conditional covariances
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between independent variables.

In many models, such as "errors-in-the-variables," or
"target inputs" [7], successive inputs are independent, or
have independent errors around fixed means, expressable as:

Assumption II. Rows of any random X are
statistically independent. (6.9)

In this case, it follows that U is diagonal. Additionally, we
point out that in many regression designs, the first column

of X. is non-random (consisting entirely of 1's), so that the
summations in (6.8) would begin with i = 2 and j = 2.

If Assumption I is taken also to apply to §1,
€{y1} = &{X b

g} = i X0} + SR JASX]} + U (6.10)

€18(8):7,} = d8(X]Y

and the main effect on the credibility estimate (4.1), apart
from replacing Xl by its mean value, and defining a more gen-

eral average covariance E11, is to add a diagonal matrix U to
the covariance of 91, with terms

k k
U,, = Y} ¥ (A..+bb#wlx X .}
tt i=1 §=1 1] 173

(t = 1,2, ...%k) . (6.11)

This will change ZB in an obvious manner, and we see that
the estimator to be used in (4.17) becomes

By = [g{xi}(Ell+U)'lg{>~<l}]'1g{>~<i}(Ell+U)'1yl '

(6.12)
with the new interpretation of Ell from (6.10), and a new

-1 _ a \ _ —]__ ~
€y —(E{Xl}(Ell+U) aﬁxl} (6.13)
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used to define z, in (4.15).

6.3 General Case

In the general case when all inputs and outputs are random,
we must work with the joint density p(yl,Xl,yz,lee), and be

extremely careful about the assumptions of dependence and in-
dependence which are appropriate to the model under consider-
ation. Different models may lead to different conditional
decompositions of this joint density.

Usually the regression parameters are estimated after the
initial experiment, so that the results of Section 6.2 apply.
If both experiments are performed, then the total data may be
pooled, and the same results apply with obvious modification

(see Section 7).

Therefore the central problem of interest in credibility
theory will be to predict €{§2l§l}, for which we need:
&g}, 1,1, ¥} and #1¥,:¥,}. (6.4) and (6.5) still apply

because the data-gathering experiment is prior to the one for
which the prediction is made. However, to compute £{§2}, we

need an assumption such as (4.7) to specify a form for
£{§2|y1,xl,x2,e}. Given this, we then uncondition in any

convenient way, say
&1y} =<3’<3’é"<5’é’{§2|}~(2|§1|§1|5} , (6.14)

using any other simplifications, such as Assumption I, which
apply. Further reduction will need a careful analysis of the
experimental conditions; for example

Assumptions III(a) (b) or (c). The choice of the

future design, iz, given 6, depends only on (6.15)
(a) the past input, Xl; or (b) the past output, y.7

or (c) on both (X,,¥;);

III(a) might obtain if (Xl’XZ) were part of the same pre-

determined experimental design, or if errors in the indepen-
dent variables were serially correlated; III(b) might be
correct if the future input values depended_upon the previous
outputs, or perhaps on some estimator of B(B), such as (4.2),
as generalized in Section 6.2.
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For the RHS of (3.7), repeated application of the prin-
ciple of conditional covariance leads to

€{F,i9,} =881, (X):X1:0) X, [0}
( ~ ~ ~ -~ ~
+g%{&f{yz|x2_|xl,e};x18(e)le} (6.16)
+ @1868(3,| X, |% |8 i6(X, [8)-8(B))
where the arguments of 221(X2,X1,9) show that the covariance
of observational errors between ?2 and ?1 can now depend upon
both inputs; one possible term in (6.16) is missing because
we still assume €{§1|X2,X1,6} = XlB(B). Further simplification

depends upon using forms such as (4.7), and clarifying the ex-
perimental relationships between 6, Xl, and X2.
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7. Prior Information and Prior Experiments

The distinction between prior information, in the usual
Bayesian sense, and the information obtained as the result of
a prior experiment is not clear-cut. Suppose we have given
prior information (b,4) about B(6), and the matrix of observa-
tion error covariances E for any (n,X). A first experiment
(nl,Xl,yl) then provides a further estimate of B(6), which

supplements our knowledge prior to the performance of a second
experiment (nz,Xz,yz); thus, there is total prior information

(b,A;E.,;n,,X,,Y.) as input to the second stage. On the other
117717141

hand, we know that the estimation of B(8) after two experiments
can be regarded as a combined single experiment, and it is
interesting to examine further the relationship between these

two viewpoints.
To estimate g{B(é)lyl,Xl;yz,Xz}, we form the enlarged

versions of (2.1) (2.2):

4 3

. -
Y1 X

& < B> = B(B) (7.1)
| Y2 %2
(" - - N\ —
¥ £, (8) 0
Y5 | O Ly2(8)

~ o

where we have assumed the two experiments are observationally
independent, and the design matrices are fixed. Then, following
the analysis of Section 4.1, we find an enlarged ZB—type

k><(nl4-n2) credibility matrix, Zl 2 for the combined experi-
4

ment ,
— L] )
zl’2 = A[xl xz] o (7.3)

which is then used in the estimate:

ELB(8) |y) /Xy i¥pr X} % £o(yy /X 3750%,) = [T = 2 5 b2y
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If we define individual ZB—type matrices for each of the

experiments individually,

1
i

then the combined credibility matrix can be written in a
simpler form:

-1
Inl Xy2,
Z = |2, Z (7.6)
1,2 [ 1 é]
' X2Zl In2
L
T(I. -X.2.X.2.)° 1 (I -X,2.X.%.) 'X.z
1 1v2 271 n, 1727271 1
o
(I -X.2.%.2.) 1x.x (I. -X.Z2.X.2 )‘l
n, 2717172 241 n,  “2°171%2

z, = OX!(E;; + xiAXi)_ , (i =1,2), (7.5)

2

Further simplification requires the assumption of full rank for

Xl and X2, and the definitions (see (4.14) (4.15):
-1 _ -1 . _ -1 . .
e;” = XiEiiXi : z, = A(A+—ei) : (1 =1,2). (7.7)

After repeated use of (4.12) and (4.16), the result finally
simplifies to

_ _ ) -1
Zy,2 = [(Ik zy) (I = 2zy2,)

Defining the individual classical estimators for each exper-
iment

1

2, (Ik-zl)<1k-z2zl)‘1z2]. (7.8)

Bi(yi) = €.X!E..yi ’ (i =1,2) , (7.9)

1 1 11

we obtain finally the combined-experiment estimate ,

(7.10)
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where

Z(l) - (Ik__zz) (Ik_zlzz)—lzl; 2(2) = (Ik—zl) (Ik—ZZZl)—lzz.

(7.11)

This formula can then be rearranged so as to display a new
prior mean, b(z), which is used as input to the second experi-

(2)

ment, together with the credibility matrix z ;, in the "single-

stage" formula
_ (2) . (2) (2) 4
fs(yllxllYZIxz) = (Ik—z )b + Z Bz(yz) . (7.12)
Then, we find that

(I, -z)b + z,8,(yy) = fB(yl,Xl) ’ (7.13)
is just the usual first-stage credibility prediction (4.2) or
(4.17), which becomes the mean input for the second experiment.

We may further clarify (7.12) by seeing what equivalent

regression coefficient covariance, say A 2), is used as input
to the second experiment to find the credibility coefficient

in the usual way as

2(2) = a(2) (,(2) | 82)_1 (7.14)

We find

(2) _ , -1 -1,-1 _ _
A = (e] + 877 = zye) = 05(X)) (7.15)

which is just the preposterior estimate of the error covari-

ance (5.2) after the first experiment!

To summarize, we can view the two experiments (nl,xl,yl)

(nz rleyz) H
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(1) Either as a combined experiment in which the prior
information b and A is used in (7.10) to form an
estimate of R(8);

(2) Or as a two-stage process in which b and A are used
in the first experiment to form fB(yl,Xl) and @B(Xl),

and these values are then used as the prior vector
mean and matrix covariance of the regression coeffi-
cients for the independent second experiment,
forming an estimate of B(®) using (7.12) (7.14).

The extension to multiple cascaded experiments is obvious.

Also, it follows that, prior to both experiments, our estimate
of the final covariance matrix is

-1 -1 -1 _ -1 -1, -1.-1
0, (X),Xy) = (e + 0 (X)) = (AT +el” 4650 .

In other words, the total final precision is estimated, prior
to any experiment, to be the sum of the prior precision plus
the observation precision of each experiment.

We now examine several special cases of interest.

7.1 Imprecise Experimental Results

If the first experiment is performed under poor observa-
tional conditions, we expect the diagonal elements of E1l to

be large compared to those of XlAXi' Under these conditions,
zl-+0, z(z)-+z2, and the results of the first experiment are
ignored, with b and A used directly as inputs to the second
stage. Similar remarks apply to imprecise results in the
second experiment; and, of course, if both experiments have

high observational variances, then the best forecast is just b.

7.2 Diffuse Prior Information

If, on the other hand, the prior variances of the re-
gression coefficients are very large compared to the imputed
covariances €y and €, due to observational error, then z, and

Z, approach unity, and we see from (7.14) (7.15), or by care-
ful limits in (7.11), that z' 0 > (e]7+e;h) Thelt, (i = 1,2),
and

-1, -1,-1]._-1; -1
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In other words, the prior information is ignored as the diag-
onal elements of A become large (the prior becomes "diffuse"),
and the resulting estimate weights the classical estimators
from each experiment in the familiar proportional-to-precision
manner. A formula similar to (7.16) is given by sampling
theory arguments in the "mixed-estimation" method of Goldberger
and Theil [8, Section 5-6][9]1[27]([28].

Alternatively, we may regard this case as one in which
a prior mean Bl(yl) and a.prior covariance e, are used as

input to the second experiment.

7.3 Direct Estimate of Regression Parameters

If the first experiment provides a direct measurement of
the regression parameters, B(8), then n; = k, X; = I and

for consistency, we could call y = b1 a new estimate of b,
with covariance of observation errors, 81 = Al, say. Then,
the credibility matrix in this special first experiment is

z. = A(A4-Al)_l the mean input (7.13) to the second ex-

14

1
periment is

(2) _ -1 -1,-11],-1 -1
b = (A + Al ) [ b4—Al bl] ’ (7.17)
and the covariance matrix input (7.15) is

(2) _ a1, A;l)-l ) (7.18)

In other words, if there are two prior estimates of the re-
gression parameters, then they should be combined in the usual
proportional-to-precision manner, and then used as input.

7.4 Similar Experiments

If the design matrix, X, of the two experiments is the
same, then the common z = A(A+—e)-l, with e—l = X'E_lx, and

the forecast (7.10) can be written
£q(y 7¥,iX) = €(20+€) b + 2A<2A4—e>'1[%(§<yl)-+é<y2))] , (7.19)

with an obvious definition of the common function B(y). 1In
this form, the analogy with the many-sample credibility fore-
cast (3.11)(3.12) is obvious, and the extension to t similar




experiments is immediate :

t
1 N
fB(Yl;YZ;---yt;X) = [Ik—Z(t)]b + Z(t)[E izl B(yi)] , (7.20)
with a new credibility matrix
Z(t) = tA(th + e) T . (7.21)

7.5 Repeated Dissimilar Experiments

For completeness, we give the general formulae correspon-
ding to (7.10) (7.11), when t dissimilar experiments

(nl,Xl,yl)(nz,Xz,yz)... (nt,Xt,yt) are performed. In an obvious
extension of notation ,

. t :
(l)] (i) 3
z b+ J z'7'B.(y.)
1 i=1 ol

o~ ot

fB((YiI‘Xi)7i=lrzl---lt) = [Ik_ i

(7.22)
where the z(l) are the solutions of
—~ -1
-1 ]
zl Ik I
I z—l°" 1
[%(1)z(2)--- z(tﬂ = [L1..-1]] ¥ 2 k . (7.23)
: : .—l
Iy Ik 2y
- -

The prior-to-experiments estimate of the final covariance of
the estimator error is

Il ~1ct

_ (-1 -1\-1
@ (X XyyenniXy) = <A + e > ; (7.24)

1 1

that is, the final precision is estimated to be the sum of the
prior precision plus all of the observational precisions. Of
course, as indicated earlier, it is probably easier to compute
(7.22) in the recursive manner suggested earlier in this
section.
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8. Related Work

There are two papers which originated the application of
credibility theory to regression problems. In a multidimen-
sional model, with elaborate notation based on practical con-
siderations, Hachemeister [10] has given prediction formulae
equivalent to (4.18) (4.19); however, his derivation appears
to require the assumption of heteroscedastic error terms, i.e.

$(0) = 02(6)In , (8.1)

or of the sample-mean generalization in which the ith diagonal
term of I(8) is 02(6)/Pi, where Pi is the "volume" of the ith

sample.
He also gives a credibility result for a homogeneous
estimator, i.e., with Zig 0 in (3.4), and the remaining

credibility coefficients constrained to give an unbiased
estimator. For models of this type, one usually has collateral
data [17] from similar experiments performed on other risks,

with independent values of 6.

Taylor's first paper [25] concentrates on the two-param-
eter, homogeneous estimator model, using essentially the same
assumptions as Hachemeister, but with a simplified unbiased-
ness constraint. In a later paper [26], Taylor generalizes
both the homogeneous and inhomogeneous versions of (4.18) to
Hilbert spaces, and shows various special cases.

Turning to exact Bayesian regression results based upon
multinormal likelihoods, Raiffa and Schlaiffer [22] give
formulae equivalent to (4.17) for the cases in which
(1) 02(6) = 02 is a known constant, and the prior on B(9) is
multinormal (b,A); (2) (02(6),8(6)) are inverse-Gamma-multi-
normally distributed. Other models by Tiao, Zellner, and
Chetty [29]1[30]1[32][34] concentrate on the use of a diffuse

prior density, p(B,oz) o 0"1, or its multidimensional equivalent

[32, Chapter 8]; thus, after one experiment,él(yl) is "fully

credible," or after two experiments, results similar to (7.16)
are obtained. Of course, since these are exact Bayesian
results, the complete posterior distributions of the parameter
are available--usually some variation of the multivariate-t

density.

In [32, p. 240], Zellner takes an "informative" prior
which is slightly more general than the usual natural-conjugate
prior for the multinormal; his likelihood is multivariate,
with homeoscedastic errors, which can be reinterpreted as
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single-variate with arbitrary I(8). By expanding the resulting
posterior density for the regression parameters, he finds from
the leading normal term a mean estimate which is "a ‘matrix
weighted average' of the prior mean...and the least-squares
quantity B whose weights are the inverse of the prior covari-
ance C and the sample covariance matrix." This is, of course,
just our result (4.17)(4.18)(5.2), gotten as an approximation
for arbitrary likelihood and prior densities.

We have also indicated that, using sampling theory argu-
ments, Goldberger and Theil [8]1[9]1[27]([28] have obtained
formulae similar to (7.16), except that, since oi(e) (1 = 1,2)
in €,s €, are unknown, they propose substituting various

reasonable sample estimates.

9, Exact Results

It can be seen from the above that the credibility
formulae presented here are exact when the likelihood is
multinormal, and the prior is from a natural conjugate family.
However, there are additional cases in which the credibility
results are exact, based upon the Koopmans-Pitman-Darmois
exponential-type families, and their (suitably enriched)
natural conjugate priors. (See [12]1[13]1[14] for exact results
for the model of (3.11).) . These will be reported in a
separate paper.

10. Extensions

Many of the topics which are considered as extensions in
classical works on regression are already covered by our basic
model, since no special assumption about the error covariance
matrix IZ(6) has been made; for example, error terms may be
autocorrelated. Multivariate regression models are already
"serially" included, and it remains only to translate them
into the usual "parallel" notation. And, by following the
discussion in Section 6, a variety of random input models may
be elaborated; for example, successive inputs may follow a
"random shocks" process [15].

There are many interesting regrcscsion models’ in which the
design matrix is not of full rank. In these cases, (4.2) and
(4.4) are still viable, even though the classical estimators
do not exist. Or one may add additional constraints, based
upon external considerations, until the problem is "identifiable,"
in the classical sense. The particular problem ovZ estimating
flows in a network will be the topic of a future report.

For a simple linear regression, one can also talk about
problems of inverse regression; that is, given y, what was
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the input x? These questions arise in various problems of
measurement, and a detailed study of instrument calibration
and measurement using credibility methods may be found in [18].
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Bayesian Inverse Regression and Discrimination:

An Application of Credibility Theory

R. Avenhaus and W.S. Jewell

Abstract

1.

Many measurement problems can be formulated as follows:
a certain linear relationship between two variables is to be
estimated by using pairs of input and output data; the value
of an unknown input variable is then estimated, given an
observation of the corresponding output variable. This
problem is often referred to as inverse regression or dis-
crimination.

In this paper, we formulate a general Bayesian calibra-
tion and measurement model for this problem, in which prior
information is assumed to be available on the relationship
parameters, the possible values of the unknown input, and
the output observation error. Simplified and easily inter-
preted formulae for estimating the posterior mean and
variance of the input are then developed using the methods
of credibility theory, a linearized Bayesian analysis
developed originally for insurance estimation problems. A
numerical example of the calibration of a calorimeter to
measure nuclear material is given.

Problem Formulation

In this paper, we consider problems of the following kind:

- wWe wish to estimate the value of a certain state variable x

which cannot be measured directly, or only with very large error

or effort. We know, however, of another state variable y, which

is statistically dependent on x, and which can be measured more

easily or accurately. Thus, in principle, we can estimate the

relationship between x and y, and then, with small effort, ob-

tain x by measuring y and using the inverse relationship.

However, difficulty arises because we must use other pairs,




(xi,yi) (i =1,2,...,n), to estimate the relationship. Often
these will have been determined for other objectives and under
different experimental conditions. Thus, the true values of
independent and dependent variables may not be precisely known,
or the relationship itself may be slightly different than it
appears from the data.

Finally, as in most physical problems, we assume that a
great deal of collateral information is available which gives
us some prior idea of relationship between x and y, and even
of the unknown value x we are trying to estimate. In other
words, we wish to make a Bayesian formulation of the problem.

Three examples of this class of problem are given below.

A. Calibration and Indirect Measurement of Nuclear

Materials

Nuclear materials, e.g. plutonium, are extremely
difficult to measure directly by chemical means.
Therefore, one uses indirect methods, based upon the
heat production or the number of neutrons emitted, in
order to estimate the amount of material present. From
well-known physical laws, we have a general relationship
between these variables, but any measurement instrument
based on these principles needs first to be calibrated.
Usually, this calibration can be done with the aid of
standard inputs, containing known amounts of nuclear
materials. However, these inputs (xi) are not generally

under our control, and in some cases, may have residual




imprecisions in their values.

Measurement instruments often have longer-term
drifts, during which they tend to loose their original
calibration. For this reason, measurement of a given
production run often consists of two distinct phases:
(re)calibration of the instrument, and actual indirect
measurement. With a fixed amount of time available, it
is of interest to determine how much time should be
spent on the two phases, assuming that additional time

spent on each observation reduces observational error.

Estimation of Family Incomes by Polling

We wish to estimate, through a'public opinion poll,
the distribution of family incomes in a certain city
district. As the major part of the population will not
be willing to divulge their incomes, or will give only
a very imprecise figure, we look for a dependent vari-
able which can be more easily determined. According to
the literature (see, e.g. [10]), housing expenses are
strongly related to family income, and, furthermore,
it may be assumed that the population is less reluctant
to divulge this figure, even though they may not be
able to do so precisely. Clearly, to determine this
relationship exactly, we must have some families in
this district who are willing to give both their total
income and their household expenses. On the other hand,
we have strong prior information on this relationship

from similar surveys, and may have general information



on income distribution from census and other sources.

C. Missing Variables in Bayesian Regression

In a paper with this title [11], Press and Scott
consider a simple linear regression problem in which
certain of the independent variables, X;, are assumed
to be missing in a nonsystematic way from the data pairs
(xi,yi). Then, under special assumptions about the
error and prior distributions, they show that an optimal
procedure for estimating the linear parameters is to
first estimate the missing xi from an inverse regression

based only on the complete data pairs.

Problems of this kind are described in textbooks on the
theory of measurements, and are sometimes called diserimination
problems (Brownlee [1], Miller [9])-

In the following, we shall formulate these problems as
Bayesian calibration and measurement problems, in the sense of
Dunsmore [3] [4] , Hoadley [5], and Lindley [8]. This formulation
is quite general, and although the language corresponds to that
of example A, the translation to other examples is easily made.

Because of the strong distributional specification require-
ments of the full Bayesian analysis, we shall then use the
approach of credibility theory to find best linear approxima-
tions to moments of interest. The resulting formulae enable
us to easily display the relative value of prior information,
on the one hand, and information obtained in the calibration,

on the other. We will develop further the optimization problem




described in Example A above, and will consider a numerical

example of calibration and indirect measurement of nuclear

material.

2. Bayesian Calibration and Measurement Model

To develop the Bayesian model, we suppose that:

(1) Calibration consists of n independent pairs of input
and output observations (x,y) = «xi,yi), i=1,2,...,n). (xi
is a relatively precise or standard input, and Yy is the
observed output on a measurement instrument, which specifies
a statistical relationship between these pairs through a con-
ditional measurement density, p(yi|xi,e); the measurement
density depends upon a fixed but unknown measurement parameter
8, for which we have a prior density, p(e));*

(2) Measurement consists of using the same instrument on
a sample of unknown input, X = x, to obtain an output ¥ =y,
say; the problem is then to <nfer the value of x. Since this
cannot be accomplished, we must, in general, settle for an
estimate, &, which, in the remainder of the paper, we will
assume to be éqily;g,x}. Other Bayes estimators may be important
in other physical situations.

Following [8], we see that we must compute the posterior

conditional density,

*We use the convention that the arguments of any p(+) indicate
the particular density in question, which may be with respect
to Lebesgue or discrete measure. Where necessary, we indicate
a random variable with a tilde; i.e., X is the random variable
corresponding to x, etc..




p(x,y;¥|x)
p(y;y[x)

px|y:x,y) =

_Iply,y|x,x,0) p(6]x,x) p(x|x,8) dé (2.1)

/p(x',y,y|x) dx'

from which the mean, &{X|y;x,y}, will be our estimate of the
unknown input, and the variance, ¥{%X|y;x,y}, will be the norm
for our optimization problem, since we wish to make the estimate
as precise as possible in the least-squares sense.

To proceed further, we must make additional statistical
assumptions appropriate to our problem:

(1) Given 9, we assume that the measurements are indepen-

dent:

p(y,y|x,X,6) = p(y|x,0) py;|%;,0) i

N =S
’_I

i
(2) We assume that the prior on the measurement parameter

is unrelated to any of the inputs:
p(6|x,x) = p(8) ;

(3) Any unknown input in the measurement process, X, 1is
selected independently from the standard inputs, x = [Xlrle-'°lxn]|

and the parameter 0:
p(x|x,0) = p(x) .

The third assumption is the strongest, and may not hold, for
example, when the calibration inputs and the test input come
from the same production process. However, in our case, we

assume that the calibration inputs are independent standards.




By elementary manipulations, we obtain:

p(x) Jp(y|x,0)p (6|x,y) dé
p(x|y;ix.y) = | L4 ' (2.2)
/p(yle') p (8'|x,y)de'

where

p (y;]%;,0) P (6)

n=:s

i=1
P(9|§ry_) = J' -

ol (2.3)
I p (yjlx.,e') p (6') 4o’

J

j=1

Notice that the denominators of (2.2) and (2.3) are just
normalizations, which may be computed directly at any time.

In the above form, it is clear that the problem breaks

apart mathematically into two problems:

(1) The updating of p(8) to p(6|x,y) (calibration):;

(2) The calculation of moments of interest for p(x|y.0),
averaged over the appropriate density of 0 measure-
ment.

We tackle these problems in reverse order, since the only effect
of calibration is to modify the prior information about the
regression parameters and to improve the precision of this

estimate.

3. Estimation of Input Using Credibility Theory

To f£ind the moments of p(x|y,8) = p(y|x,0) p (x)//p(y|x',0)
p(x') dx' , we must in the general case make distributional as-
sumptions about p(x) and p(y|x,8). However, since only the

moments of this density are of interest, it is desirable to




have a simpler, distribution-free approach, such as that pro-
vided by credibility theory [6][7]. In this approach, Bayesian
means conditional on given data w, say, are approximated by
linear combinations of certain functions of w, chosen from
physical considerations; the coefficients are then chosen to
minimize the mean-square approximation error prior to w. 1In
certain cases, these approximation formulae are also the exact
Bayesian conditional means [6].

The usual assumption about a measurement process is that,
given the measurement parameter 6, there is a linear relation
between the true input and the true output, but that the ob-
served process may contain an additional uncorrelated measure-
ment observation error, with zero mean and known variance.

This may be conveniently expressed as:

&{¥]x,8} = B, (8) + B,(8) x (3.1)

»{¥|x,6} (3.2)

02
MoC

(In other applications, the observation error may also depend

upon 8 or the level of x.) We call 81(6), 82(6) the Znstrument

parameters.

We know that, for general p(x,y|6), the fact that the
regression of y upon x (3.1) is linear does not necessarily
mean that the regression of x upon y is linear in y. However,
it is true in the case of the normal and some other bivariate
distributions, and seems a desirable characteristic of any
measurement process. Therefore, we shall assume that our prior

estimate of the true input x, given an observed output y, may




be approximated by the linear function:
Slx|y) = #81%|y, 0} ~ £(y) = 25 + z;7 , (3.3)

where the "credibility coefficients" Zqr 21 are chosen so as

to minimize the approximation error variance:

Hy = S[61%]7) - £@]° . (3.4)

For the remainder of this section, we shall treat the averaging
over 6 as if it were with respect to the prior p(6), realizing
that in the next section we shall change to p(elg,x), to add the
information provided by the calibration.

One can easily show [6,7][2, Appendix 3] that the optimal

credibility coefficients are given by:

zg = &%} -z ¥ (3.5)
z, = %3%%%l ; (3.6)
Y

so that the optimal estimator is unbiased.
&{%} represents our prior estimate of the value of the

input to be measured; the remaining moments must be calculated

from our measurement assumptions (3.1) (3.2). From (3.1):
E{y} = bl + bzé{i} ' (3.7)
where
b, = é’{Bi(e)} (i = 1,2) (3.8)

are the mean prior estimates of the instrument parameters.

By unconditioning (3.2) on x and 6, we find:
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o1 2 5 2 5 (5172
F{F} = oy + XA} (DS + 8,5) + 8yy + 28,8} + 8y, [#(X}]°
where

by = %8 (8) 5 B5(8)) (5,3 = 1,2) (3.10)

are the prior estimates of the (co)variances in the instrument

parameters. We see that the total prior-to-measurement var-

iance in the observation is composed of three groups of terms:

(1) The observation error variance;
(2) The prior variation in input;

(3) (Co)variances in instrument parameters.

An increase in any one of these will reduce the weight, Zqs
attached to the observed output, y, in (3.3).
There is only one prior source of covariance between input

and output:
®{¥:%} = bjyii} ' (3.11)

which means that, as the uncertainty in the input increases,
one must attach more importance to the observed output in (3.3).
For convenience, we reproduce the final formula for the

estimate of the true input:
£(y) = &{x} + 2 (y-&{F}) = (1-byz,) &K} + z,(y-by)

b, ¥1%}
21 = 3 > - (3.13)
Op * AL (D5 + B,,) + A1 + 28, ,8(%} + 4,, [#{R]]

Thus, in the credibility approach, only seven prior moments must
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be specified: the mean and variance of the potential input,
and the two means and three (co)variances of the instrument
coefficients.

It is of interest to examine several limiting cases of
the estimator (3.12) (3.13) in more detail. First, as already
mentioned, if either the observation error variance oﬁ or any
of the instrument variances is very large (sometimes called a
"diffuse" calibration prior), then, since z4 vanishes, the best
estimate of X is its prior mean, #{X}; the measurement process
gives little additional information. Similarly, the vanishing
of 7{%} makes &{x} very reliable.

On the other hand, suppose that we have a "diffuse" prior
on the level of input, that is, although &{%} is given, ¥{X}>=.

In this case the forecast can be rewritten:
£ _ 2771 2. ora
(y) = |1+ (8,,/b3) (A, ,/b5)F{%} = (by/by) = (¥/by) | . (3.14)

If A22/b§ is small compared with unity, we obtain exactly the
deterministic result corresponding to (3.11), y = bl+-b2x .

In the optimization model of Section 6, we shall need the
mean-square value of the error between the true value x and the

predictor f(y), that is, the variance of forecast error:
~ ay 2
H=d&{(% - £(H) "} . (3.15)
But, by elementary manipulations,

H=H, + H ’ (3.16)
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where H. is the irreducible forecast variance using the Bayestan

o)

conditional mean:
¥} =& {x|¥} (3.17)

and HA is given by (3.4).

With the optimal choice of credibility coefficients, we obtain:
H =7{%} - z2,919:%} =¥{&} (1 - z,b,) . (3.18)

H in (3.15) and (3.18) is the variance of forecast error for
one inverse measurement. If r such measurements are performed,
with independent, identically distributed inputs, then one can
easily show that the variance of the total error will be:

) - 1% - 2. b

1Py)

+ (2% -x) 22 (ay + 28, 8% + 8, [B(R1]F) .

(3.19)

We see that, in addition to the expected first term which is
r times (3.18), there is a component which is proportional
to r2. This represents a possible persistence of error due

to instrument parameter covariances, which may cause the in-

dividual forecast errors to be positively correlated.
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4. Updating of Instrument Parameters Using Credibility Theory

We turn now to the problem of incorporating the results
of the calibration experiments into our prior-to-measurement
density on 6. Remember that the number, n, of such experiments,
and the previously calibrated levels of the inputs,
xi(i=l,2,...,n), are assumed to be fixed by external considerat-
ions. See alsc Section 6 below.

Assuming that (3.1) and (3.2) apply also to calibration

(i.e. the same instrument is used), we may write:
&ly|lx,9r = X g(6) , (4.1)
~ o~ 2
#{yiyl|x,0} = o 1 *) (4.2)
where
i = B’l'§2""’§IJ' r X = [x]_’XZ""’er' r
g(e) = [By(e),B (0] , x=[1.,x] .,

in is a vector of n ones, I, is the unit matrix of order n,

and 02 is the observation variance for each output yi(i=l,2,...,n).

C
We thus have a formulation as a Bayesian regression problem, in

which we want to estimate various moments of p(g8(6)|x,y). 1In

particular, from (3.8)(3.10)(3.13)(3.18), we see that the first

and second moments:
&B16) |x,y} ; FB©):B®6)]|x,y}

will bhe needed.

(*) Vector covariance is defined as

Flwiz) = Hw 2') - Slw [FZ}]"

IN;

for any two random vectors w and
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Rather than make distributional assumptions, such as those
followed in [li], we shall again make a credibility approximation,
this time to g{@(é) | x,y}. The appropriate theory has been
developed in [7], and we shall give only the necessary results
here.

First, we approximate the desired mean instrument parameter

vector by a linear function of the data vector y:

£i80) | .y} * aly) =25 + 2y (4.3)

where g, z, are two-vectors, Z is a 2 * n matrix, and the cred-
ibility coefficients are chosen so as to minimize the mean-square
approximation of both components to those of the Bayesian condit-
ional mean vector. After some algebra it is shown in [7] that

the optimal credibility forecast can be written as:
gly) = (I, - 2)b + z B(y) (4.4)

where b = [bl,bél' is the vector of prior-to-calibration means,

z is a new 2 * 2 credibility matrix:
z = METINIL, + axER]TT (4.5)

(the terms in square brackets commute), and B(y) is the class-

ical regression estimator of B :

1 -1

Ei_(y) = x'Etx) 7l x'ETly . (4.6)

A is the 2 * 2 matrix of prior-to calibration covariances

defined in (3.10), and




- 15 -
— <y ey N —_ 2
E =4¢¥:¥lx, 6} = oo I . (4.7)

Thus, in our model, the "regression errors" are "homoscedastic",

and we get the further simplifications:

z = [AX'X] [:0(2: I, + Ax'x]"l , (4.8)
and
A _— [} -1 '
Bly) = (X'X) X'y , (4.9)
where
- 0 = _ -
1 izl xi/n 1 my
XX' = nM =n = n , (4.10)
n n 2
L}zl x;/n izl xj/n my m,

i.e. n times a matrix of deterministic moments my, M, describing

the predetermined calibration inputs. One may easily verify that:

The results (4.4) (4.8) (4.9) are intuitively very satis-
fying, for they show that our estimate of the instrument co-
efficients prior to calibration should be taken as a linear mixture
of our prior hypothesis, b, and of the well-known classical esti-
mator, é(y). The credibility attached to the latter depends upon
the so-called design matrix, X, the observation error variance,

oé, and the instrument covariances, A. (See Jewell [7]).
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Several limiting cases are of interest. First, as our
observation error variance gets very large, z vanishes, and
no credibility is attached to the calibration experiment --
it is better to stick with the prior estimates.

Conversely, if all the prior instrument covariances, Aij'
get very large, then z > I,, and "full credibility"” is attached
to the calibration data; the same result occurs as cé - 0.

Note also that full credibility occurs as the length of the
calibration run, n, increases, as long as the successive inputs
are chosen in such a way as to keep my and m, about the same;

in other words, the more calibration, the more weight is attached
to the results.

The above model may be easily generalized to the case where
the standard inputs themselves are subject to errors. In this
case, we suppose that the selection of a "target input” i specif-
ies é{&i}, rather than x,; the actual input differs from the
mean by a known variance,‘YTii}. The reader may easily verify
that the above formulae again apply, with X = [ln’ #{%}] and with

1.7) replaced by a new diagonal matrix, with terms:

2
Eii = 9

+ (b2 + Byy) ¥Ry} (i=1,2,...,n) , (4.11)
in the general case, the formulae (4.5) (4.6) must now be used;
however, if the precision of the standards is the same, the
‘eqresuion is again homeoscedastic, and (4.8) (4.9) may be used,
wut with oé replaced by (4.11).

As far as the mean-square error‘in fitting ﬁ(é) by (4.4)

is concerned, we can also show that the prior covariance matrix,
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with optimal choice of credibility coefficients, is:

0(X) = L) - g(y)) (B(B) - q(y))'|x}

1 (4.12)

= (I, - z2)A = z(x'E"Tx)" L .

2

If this fit is good, then ¢ij will be a good approximation to
%ﬁﬁi(é) ; Bj(é)} after the calibration, at least as we perceive
it to be before we actually obtain the outputs y. In other
words, ¢(X) is our preposterior estimate of the covariance
between instrument parameters.

It should be remembered that only the diagonal terms of
(4.12) were individually optimized in the choice of credibility
coefficients; one can easily show that the diagonal elements

of ¢(X) are less than those of A.

5. Integration of the Calibration and Measurement Stages

We may now complete our arguments about the relationship
between Sections 3 and 4, in light of the knowledge available
at each stage of the physical problem.

First, with only a prior hypothesis about our instrument
available, and no calibration contemplated, our best estimate
of ﬁ(é) is b, with covariance A. If an inverse measurement
were to be performed at this point, (3.12) (3.13) is the formula
we would use to estimate the true input, and H in (3.18) is the
estimate now of the variance in this estimate.

Now, suppose we contemplate performing a calibration exper-
iment (X,n), with a fixed number of standards and fixed input

design, but the results of the calibration are not yet available.
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~

We still have no basis for revising #{g(6)}, since the formula
(4.4) is, prior-to-calibration, unbiased. However, the know-
ledge that there will be a calibration will reduce our instrument

covariance terms from A to ¢(X). Therefore, prior to calibration,

our estimate of the forecast error variance after measurement
changes from (3.18) to:
20 .2 12
bZ\f{X}]
2 e 2 ~ ~y12
AT x (B3, + 6t 26, ,#{x} + ¢22[€{x}.]
(5.1)

H(X) =% {x} -
g

(This is the point at which optimization of the next section will
be carried out). Similar modification applies to (3.19).

We now perform the calibration experiment, obtaining y and

the revised estimates, g(y), of &{g(6)|y,X} from (4.4). These

revised estimates of the instrument coefficients are then used

in (3.12) and (3.13), which become:

flyly,x) = [1 - gz(z)zl(y,x)] é’{;} + zl(y,X)[y - gl(z):l ;
(5.2)

g, (y) ¥ {x}

zl(ZrX) = - : —= S
oi +fVIx}{Egz(y)]2 + ¢22} + ¢yq * 2¢12€{x} + ¢225§{x}]

(5.3)

This is the final estimator for any unknown input, after the

calibration has been performed.
We admit that it should, in principle, be possible to
revise our estimate of the covariance of the instrument co-

efficients, ¢, after the actual calibration outputs, y, are

.




obtained; however, these terms are probably already small for
any reasonable calibration run, and to construct an additional
credibility approximation for the posterior-to-calibration
variance would require additional moments and complex formulae.
Similarly, it should be possible in principle to revise

our estimate of H(X) after the measurement y is made, but this

leads to the same additional complexity. If one wishes, post-

erior to the calibration,one can replace b2 in (5.1) by 92(2)'
We mention again some of the limiting cases of (5.2)(5.3),
assuming that the revised instrument covariances are small.
First, if the observation error variance oﬁ is very large, or
the variance in input is small, then the credibility in (5.3)
will be very small, and the best estimate of the input is the
prior mean. Conversely, a diffuse input,” {X} » «, will lead to

z, (y,/X) = (gz(y))-l, and a forecast:
E(yly,x) = [y - 93 (0)]/9,(x) - (5.4)

6. Optimization

For the optimization, we assume that there is a total of
T hours to be split among n calibration measurements, say a
total of TC hours, and the remainder, TM =T - TC hours, to be
spent upon r inverse inference measurements. We assume that
one hour spent on a single measurement or calibration gives an

. . 2 . . .
observation error variance of ¢°; therefore the individual

observation variances used previously are then:

ro

2 _ no . 2 _ro
On = —— oM = 7% . (6.1)

2
C TC

=2
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To minimize the prior-to-calibration estimation of the
forecast variance of a typical measurement, we must minimize
the denominator of the second term of H(X) in (5.1):

ro? S 2 - ~q 2
D(To,Ty) = - +. {x}(b2 + 0y5) + byq + 2¢22JLX} + ¢22E¥{x}]
M (6.2)
where ¢ is given by (4.12), with Oé replaced by n02/TC in (4.8),
subject to T, + T, = T. In general, this optimization must be

carried out numerically. However, if noz/Tc is much smaller

than the diagonal terms of AM, then the calibration will have

practically full credibility, and

2
¢ = (I, - z2)b = [?2 - (1, - E%—(x'x)_l)] = = Ml (6.3)
Sl

This shows the expected result, namely, that a good calibration
run gives vanishing ¢ as TC increases. The effect of the number
of runs, n, is essentially cancelled out, as long as M is stable

over different designs.

With this approximation, (6.2) can be written:

2 2 ~
_ Xo uo 2

D(TC,TM) = 5 + O + ¥ {x} b2 ' (6.4)

M C
where
m, - 2m, & {x} +é’{x2}
_ 2 1
u = 5 . (6.5)
My = My

this form, the optimization is obvious--the total time T

Lk

should be split:

* *
To / Ty = Ju/r (6.6)
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giving a minimal value for D of:
* o2 2 - 2

D = T (1 + Yu/r)° +¥1tx} b2 . (6.7)
An increase in the number of production runs, r, decreases the
time used for calibration in an interesting way (6.6).

It is also interesting to note, in this approximation,
that the ratio of effort depends, in addition to r, only on the
first and second moments of the calibration design inputs, and
on the measurement input. If the design X is considered to be
variable, we see that we can further minimize (6.4) by decreas-

ing u, i.e. we choose inputs X so that:
my = &Fx}t (m2 - mi) is as large as possible; (6.8)

which is very intuitive from a physical point of view.
This design choice would make p close to unity, and then
TZ/T; = ry%. Of course, there may be many other physical
reasons why the calibration input must be chosen in a dif-
ferent manner.

Even if the approximation (6.3) does not hold, (6.6) is suggested

as an initial trial solution.
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7. Numerical Example: Calorimetric Measurement of Nuclear

Material

In order to illustrate the models developed in previous
sections we use three kinds of information:
(1) a-priori information on the relationship between
dependent and independent variable;
(2) results of calibration;

(3) results of measurement of the dependent variable.

The following realistic examplé will illustrate circum-
stances under which certain information is more important, and
the improvement is achieved by using credibility procedures.

Let us consider the quantitative measurement of plutonium
with the help of a calorimeter. The problem is to measure
a voltage induced by the.heat produced by the plutonium. For
this purpose, one has to know the isotopic composition of the
plutonium to be measured as well as the specific heat production
of the different isotopes. Typical data are given in Table 1.

Let the amount of plutonium of one batch to be measured,
and let w be the specific heat production of the plutonium
under consideration. Then the heat x produced by the amount

P of plutonium is given by
Xx=w+P . (7.1)

The voltage EM induced in the measurement chamber of the

calorimeter is proportional to this heat:

E,., =a+*x=a-+ (wP) . (7.2)




In a second, identical chamber, a reference heat Xq is gener-
ated which induces a voltage EO' Because of the assumed sym-

metry of the chambers, we have
E. =a-°*Xx . (7.3)

The value of Xq is kept constant throughout the operation of
the instrument. The quantity actually measured is the differ-

ential voltage y,

y =E, - E =a-x0—a-(wP) : (7.4)
or, in other words,

y = By + By + (WP) (7.5a)
where

By = arxy B, = -a , a>0 . (7.5b)

The value of xO may be assumed to be known precisely. In
addition, we assume there exists experience from past measure-
ments, expressed as expectation and variance of d, now considered

as a random variable. This means we know

b, = é’{a}xo ; b, = -&{a}l ; (7.6a)
¥{8,} (By:6,) x2 -xg
A = = ¥{&} . (7.6b)
8,:8,} ¥{8,} x5 1

The calibration is performed by putting an electric heater into
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the measurement chamber and generating different values X359

of heat which generates corresponding differential voltages Y

AEi = Bl + 82‘ Xio v i=1,...,n . (7.7)

Typical data for such a measurement problem are given in

Table 2. According to this table, we have

o2
Il

600 [mv] , (7.8a)

o
"

-240 [mv/Watt] ; (7.8b)
and furthermore,
¥(a} = (.02)%. [#@]% = 25.04 * [mv®/Watt®]. (7.8c)
In addition, we have
SI%) = 2.668, o {%x} = .07118, &{%°} = 7.189 .  (7.9)

Therefore, we get for Aij’ as defined by (3.10) and given by

(7.6),

6.25 -2.5 144 -57.6
A = 23.04 = . (7.10)

-2.5 1 -57.6 23.04

Let us consider first the case that we do not perform any
calibration, but use only the prior information given by |
equations (7.8) and (7.9). According to (3.12) the estimate |

. :
of the heat production is given by |

]




£ly) = &%} + z,(y - &{F})

3 y = 600

2.48-10 © + b, + 0.2234 '

(7.11)

which is to a good approximation

£(y) v g (v - 600) .
2

We can easily determine the preposterior improvement in pre-
cision if we use (7.11) instead of simply using &{%}; if we

take &{X}, then the variance of this estimate is

H, =y {x} = .07118 .

Now, according to (3.18) we get for the variance of the fore-

cast error of a single measurement

H=7{x} - (l-zl-bz)

= (%} +9.31 - 104

~ 10-3'VT§}

and according to (3.19), for the variance of the forecast error

of the sum of r measurements

(r) —_ Y I - M 2- . 2. L] X
H = re¥{x} (1 z;+by) + (r r).zy (All-i-zA12 (X}
~ 2
+ Ay, [£1X}]7)
=4.3+10° + 4+10° 2
. 4.4.10°%

which shows that this variance is mainly determined by the

uncertainty of the instrument parameters, which is common to
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all measurements.

Let us now use the calibration given in Table 2. With

1 .8
1 1.1
X = . . (7.12)
1 2.9
we have
1 1.85
X'X = 8 = 8M . (7.13)

1.85 3.845

We can use the approximate formula (6.6) for the optimal dis-
tribution of calibration and measurement effort, if n - 02/Tc
is much smaller than the diagonal terms of A+ M. We check this
assumption by first using equation (6.6) and then seeing whether
or not the result fulfills the assumption.

According to equation (6.6) and Table 2 the optimal

distribution of the time T available is given by

T*
C
Tﬁ = .214 , Té + Tﬁ = 720 ,

or, in other words,

* —— p=— .
Tc 127 , Tﬁ 593 . (7.14)
Therefore, we have
) | (aM) 44| 300
o2 = Brg = 1.154 << = , (7.15)
c

142
| a5, |
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which means that our assumptions are fulfilled.
Finally, we want to determine the improvement in
precision by using the calibration. According to equation

(4.12) we have
o (X) = (I2 -2) 40

where z is given by (4.8). With (7.10), (7.13), and (7.15)

we obtain
5.96 12.54
-2.36 -4.94
which gives for (4.12)

8.06 -3.22
b = . (7.16)
-2.34 0.96

Even though the forecast error variance after calibration and
measurement according to (5.1) can be determined only if the
calibration data (xi,yi), i=1,...,n. are available, a com-
parison of (7.16) and (7.10) shows that the use of the cali-

bration represents a considerable improvement in precision.
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Table 1: Typical Plutonium Mixture
(Source: Schneider et al. [12])

Pu238 Pu239 Pu240 Pu241 Pu242 Am241
Mean
concentration 0.041 90.51 8.265 1.113 0.064 0.05
[%]
Specific
heat flux 569.0 1.923 7.03 4.62 0.12 108.4
[mw/g]
Contribution
to w 0.2333] 1.7405| 0.581 0.052 1 7.69:10 °|0.0612
[mW/g]

Mean specific heat flux w: 2.668 [mW/g Pu]




Table 2: Typical Measurement Problem

(Source: Schneider et al. [12])

No. of batches r 60
Mean Pu content P [hg] of one batch 1
Mean heat production x = w+P Uﬂ of one batch 2.668
Batch-to-batch variation 10%

Variance of a single measurement oz(t) UmV)zj as a

18.324
function of time t[h] for t > 6 —t
Total time T[h] available 720
No. of calibrations n 8
Range R of calibrations [Watt] 0.8 < R < 3.0
Values X9 of calibration procedure 0.8, 1.1,...,2.9
A priori information JBl[mV] on intercept Bl 600
A priori information 582[mV/Wat§ on the slope of
the calibration line -240

A priori information on the variance of B

(parametrically) 2%, 5%
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